

СПОСОБ ОПРЕДЕЛЕНИЯ ГЛУБИНЫ ПРОКЛАДКИ ОПТИЧЕСКОГО КАБЕЛЯ БЕЗ МЕТАЛЛИЧЕСКИХ ЭЛЕМЕНТОВ

Бурдин В.А., Гаврюшин С.А., Дашков М.В., Евтушенко А.С., Гуреев В.О., Барашкин А.Ю., ФГБОУ ВО «Поволжский государственный университет телекоммуникаций и информатики», Самара, Россия

СПОСОБ ОПРЕДЕЛЕНИЯ ГЛУБИНЫ ПРОКЛАДКИ ОПТИЧЕСКОГО КАБЕЛЯ БЕЗ МЕТАЛЛИЧЕСКИХ ЭЛЕМЕНТОВ

Бурдин В.А., Гаврюшин С.А., Дашков М.В., Евтушенко А.С., Гуреев В.О., Барашкин А.Ю., ФГБОУ ВО «Поволжский государственный университет телекоммуникаций и информатики», Самара, Россия

Оценка глубины прокладки кабеля Угол падения луча на i-й участок кабеля:

$$\alpha_i = \frac{(\varphi_{i+1} - \varphi_i)}{k * \Delta x},$$

$$k$$
 — волновое число $k=rac{2\pi}{\lambda},\,\lambda=rac{c}{f}$ $arphi$ — фаза

 Δx — калибровочная длина

Оценка расстояния от источника звука:

$$r_{0i} = tg\alpha_i * (x_i - x_{0i}),$$

$$x_{0i} = \frac{x_i tg\alpha_i - x_{i+1} tg\alpha_{i-1}}{tg\alpha_i - tg\alpha_{i-1}}$$

Результаты

Оценки расстояния от источника звука определяются по распределениям фазы, измеряемым DAS, поскольку при измерении амплитуды на практике вносится много искажений и выделить сигнал становится гораздо сложнее.

СПОСОБ ОПРЕДЕЛЕНИЯ ГЛУБИНЫ ПРОКЛАДКИ ОПТИЧЕСКОГО КАБЕЛЯ БЕЗ МЕТАЛЛИЧЕСКИХ ЭЛЕМЕНТОВ

Бурдин В.А., Гаврюшин С.А., Дашков М.В., Евтушенко А.С., Гуреев В.О., Барашкин А.Ю., ФГБОУ ВО «Поволжский государственный университет телекоммуникаций и информатики», Самара, Россия

Выводы

По результатам эксперимента на испытательном полигоне погрешности определения местоположения кабеля лежали в пределах 5 — 15 см.

Контакты

e-mail v.gureev@psuti.ru

