

МЕТОДИКА ПРОГНОЗА СРОКА СЛУЖБЫ ОПТИЧЕСКОГО КАБЕЛЯ

Бурдин В.А., Гаврюшин С.А., Дашков М.В., Никулина Т.Г., Попов Б.В., Попов В.Б., ФГБОУ ВО «ПГУТИ», Самара, Россия

Цели, актуальность

На сегодняшний день на многих ВОЛС в России, построенных еще в 90-е годы, оптические кабели (ОК) эксплуатируются уже длительное время и фактически их срок службы приблизился, или даже превысил срок службы ОК, заявляемый производителями, который, как известно, составляет 25-30 лет. Поскольку замена ОК на ВОЛП является наиболее дорогостоящим этапом реконструкции сети - задача прогноза службы таких ОК, эксплуатирующихся на действующих ВОЛС уже длительное время, является актуальной.

Результаты

Предложена методика прогноза срока службы оптического кабеля, базирующаяся на прогнозе срока службы оптического волокна (ОВ) в кабеле. Для прогноза срока службы оптического волокна используется известная методика [1]:

$$t_f = t_p \left(\frac{\sigma_p}{\sigma_a}\right)^n \left\{ \left[1 - \frac{\ln\left(1 - F\right)}{N_p L}\right]^{\frac{n+1}{m_d}} - 1 \right\} \tag{1}$$

Здесь t_f - время до отказа ОВ (срок службы), который необходимо определить;

 t_p - время нахождения ОВ под нагрузкой при проверке прочности (proof-test), как правило, менее 1 с (типичное значение 0,05 с [1]);

МЕТОДИКА ПРОГНОЗА СРОКА СЛУЖБЫ ОПТИЧЕСКОГО КАБЕЛЯ

Бурдин В.А., Гаврюшин С.А., Дашков М.В., Никулина Т.Г., Попов Б.В., Попов В.Б., ФГБОУ ВО «ПГУТИ», Самара, Россия

Результаты

 σ_{p} - механическое напряжение, воздействующее на ОВ кратковременно при проверке прочности (0,69 ГПа) [1];

 σ_a - механическое напряжение, воздействующее на ОВ при эксплуатации;

F-вероятность отказа (устанавливается поставщиком услуг);

 N_{p^-} число обрывов ОВ на 100 км при проверке на прочность (если значение неизвестно, то рекомендуется $N_p = 1$ [1]);

L-длина OB, испытывающего воздействие механического напряжения σ_a ;

 $m{n}$ - параметр стойкости ОВ к коррозии в напряженном состоянии;

Результаты

 m_d - параметр Вейбулла.

Как видно из соотношения (1) - для расчета срока службы ОВ, бывшего в эксплуатации, необходимо знать значения параметров n и m_d ОВ на момент выполнения прогноза. Также необходимо знать какое механическое напряжение σ_a воздействовало на ОВ в процессе эксплуатации.

В предлагаемой методике, как и в [1] значение механических напряжений σ_a в ОВ предлагается определять по результатам измерений ВОТОR на всех участках действующей ВОЛС, для которой выполняется прогноз.

МЕТОДИКА ПРОГНОЗА СРОКА СЛУЖБЫ ОПТИЧЕСКОГО КАБЕЛЯ

Бурдин В.А., Гаврюшин С.А., Дашков М.В., Никулина Т.Г., Попов Б.В., Попов В.Б., ФГБОУ ВО «ПГУТИ», Самара, Россия

Результаты

Но, в отличие от [1], для прогноза срока службы ОВ предлагается использовать актуальные оценки прочности ОВ, которые определяются по результатам испытаний образцов кабеля, отобранных с линии. Таким образом, параметры n и m_d определяются по результатам следующих испытаний:

 m_d - по результатам динамических испытаний ОВ на прочность при разрыве. Испытываются отрезки ОВ длиной 10...20 м для получения значения m_d характеризующего «внешнюю» область графика распределения Вейбулла.

n - по результатам динамических испытаний ОВ на разрыв на коротких длинах равных 0,5 м.

Выводы

Предложенная методика позволяет выполнить оценку срока службы ОВ, находившихся в эксплуатации, с учетом актуальных оценок прочности ОВ кабелей, отобранных с линии.

Контакты

ntg81@list.ru

Гранты, основные публикации, благодарности

1. Recommendation ITU-T Suppl. 59. Guidance on optical fibre and cable reliability (02/2018).

